
Chapter 20. Object-Oriented
Programming Principles

In This Chapter

In this chapter we will familiarize ourselves with the principles of object-

oriented programming: class inheritance, interface implementation,

abstraction of data and behavior, encapsulation of data and class

implementation, polymorphism and virtual methods. We will explain in

details the principles of cohesion and coupling. We will briefly outline

object-oriented modeling and how to create an object model based on a

specific business problem. We will familiarize ourselves with UML and its role

in object-oriented modeling. Finally, we will briefly discuss design patterns

and illustrate some of those that are widely used in practice.

Let’s Review: Classes and Objects

We introduced classes and objects in the chapter "Creating and Using

Objects". Let’s shortly review them again.

Classes are a description (model) of real objects and events referred to as

entities. An example would be a class called "Student".

Classes possess characteristics – in programming they are referred to as

properties. An example would be a set of grades.

Classes also expose behavior known in programming as methods. An

example would be sitting an exam.

Methods and properties can be visible only within the scope of the class,

which declared them and their descendants (private / protected), or visible

to all other classes (public).

Objects are instances of classes. For example, John is a Student and Peter

is also a Student.

Object-Oriented Programming (OOP)

Object-oriented programming is the successor of procedural (structural)

programming. Procedural programming describes programs as groups of

reusable code units (procedures) which define input and output parameters.

Procedural programs consist of procedures, which invoke each other.

808 Fundamentals of Computer Programming with C#

The problem with procedural programming is that code reusability is hard

and limited – only procedures can be reused and it is hard to make them

generic and flexible. There is no easy way to work with abstract data

structures with different implementations.

The object-oriented approach relies on the paradigm that each and every

program works with data that describes entities (objects or events) from real

life. For example: accounting software systems work with invoices, items,

warehouses, availabilities, sale orders, etc.

This is how objects came to be. They describe characteristics (properties) and

behavior (methods) of such real life entities.

The main advantages and goals of OOP are to make complex software

faster to develop and easier to maintain. OOP enables the easy reuse of code

by applying simple and widely accepted rules (principles). Let’s check them

out.

Fundamental Principles of OOP

In order for a programming language to be object-oriented, it has to enable

working with classes and objects as well as the implementation and use of

the fundamental object-oriented principles and concepts: inheritance,

abstraction, encapsulation and polymorphism. Let’s summarize each of these

fundamental principles of OOP:

- Encapsulation

We will learn to hide unnecessary details in our classes and provide a

clear and simple interface for working with them.

- Inheritance

We will explain how class hierarchies improve code readability and

enable the reuse of functionality.

- Abstraction

We will learn how to work through abstractions: to deal with objects

considering their important characteristics and ignore all other details.

- Polymorphism

We will explain how to work in the same manner with different objects,

which define a specific implementation of some abstract behavior.

Some OOP theorists also put the concept of exception handling as

additional fifth fundamental principle of OOP. We shall not get into a

detailed dispute about whether or not exceptions are part of OOP and rather

will note that exceptions are supported in all modern object-oriented

languages and are the primary mechanism of handling errors and unusual

situations in object-oriented programming. Exceptions always come

together with OOP and their importance is explained in details in the

chapter "Exception Handling".

Chapter 20. Object-Oriented Programming Principles 809

Inheritance

Inheritance is a fundamental principle of object-oriented programming. It

allows a class to "inherit" (behavior or characteristics) of another, more

general class. For example, a lion belongs to the biological family of cats

(Felidae). All cats that have four paws, are predators and hunt their prey. This

functionality can be coded once in the Felidae class and all its predators can

reuse it – Tiger, Puma, Bobcat, etc. Inheritance is described as is-kind-of

relationship, e.g. Tiger is kind of Animal.

How Does Inheritance Work in .NET?

Inheritance in .NET is defined with a special construct in the class declaration.

In .NET and other modern programming languages, a class can inherit from a

single class only (single inheritance), unlike C++ which supports inheriting

from multiple classes (multiple inheritance). This limitation is necessitated

by the difficulty in deciding which method to use when there are duplicate

methods across classes (in C++, this problem is solved in a very complicated

manner). In .NET, classes can inherit multiple interfaces, which we will

discuss later.

The class from which we inherit is referred to as parent class or base class

/ super class.

Inheritance of Classes – Example

Let’s take a look at an example of class inheritance in .NET. This is how a

base class looks like:

Felidae.cs

/// <summary>Felidae is latin for "cats"</summary>
public class Felidae
{

 private bool male;

 // This constructor calls another constructor

 public Felidae() : this(true)
 {}

 // This is the constructor that is inherited
 public Felidae(bool male)
 {

 this.male = male;

 }

 public bool Male
 {

810 Fundamentals of Computer Programming with C#

 get { return male; }
 set { this.male = value; }
 }

}

This is how the inheriting class, Lion, looks like:

Lion.cs

public class Lion : Felidae

{

 private int weight;

 // Keyword "base" will be explained in the next paragraph
 public Lion(bool male, int weight) : base(male)
 {

 this.weight = weight;
 }

 public int Weight
 {
 get { return weight; }

 set { this.weight = value; }
 }
}

The "base" Keyword

In the above example, we used the keyword base in the constructor of the

class Lion. The keyword indicates that the base class must be used and

allows access to its methods, constructors and member variables. Using

base(), we can call the constructor of the base class. Using base.Methodſ…ƀ

we can invoke a method of the base class, pass parameters to it and use its

results. Using base.field we can get the value of a member variable from

the base class or assign a different one to it.

In .NET, methods inherited from the base class and declared as virtual can

be overridden. This means changing their implementation; the original

source code from the base class is ignored and new code takes its place. More

on overriding methods we will discuss in "Virtual Methods".

We can invoke non-overridden methods from the base class without using the

keyword base. Using the keyword is required only if we have an overridden

method or variable with the same name in the inheriting class.

Chapter 20. Object-Oriented Programming Principles 811

The keyword base can be used explicitly for clarity.

base.methodſ…ƀ calls a method, which is necessarily from the

base class. Such source code is easier to read, because we

know where to look for the method in question.

Bear in mind that using the keyword this is not the same. It

can mean accessing a method from the current, as well as

the base class.

You can take a look at the example in the section about access modifiers and

inheritance. There it is clearly explained which members of the base class

(methods, constructors and member variables) are accessible.

Constructors with Inheritance

When inheriting a class, our constructors must call the base class constructor,

so that it can initialize its member variables. If we do not do this explicitly,

the compiler will place a call to the parameterless base class constructor,

":base()", at the beginning of all our inheriting class' constructors. Here is an

example:

public class ExtendingClass : BaseClass
{

 public ExtendingClass() { … }
}

This actually looks like this (spot the differences):

public class ExtendingClass : BaseClass

{
 public ExtendingClass() : base() { … }
}

If the base class has no default constructor (one without parameters) or that

constructor is hidden, our constructors need to explicitly call one of the other

base class constructors. The omission of such a call will result in a compile-

time error.

If a class has private constructors only, then it cannot be

inherited.

If a class has private constructors only, then this could

indicate many other things. For example, no-one (other than

that class itself) can create instances of such a class.

Actually, that’s how one of the most popular design patterns

(Singleton) is implemented.

The Singleton design pattern is described in details at the end of this chapter.

812 Fundamentals of Computer Programming with C#

Constructors and the Keyword "base" – Example

Take a look at the Lion class from our last example. It does not have a

default constructor. Let’s examine a class inheriting from Lion:

AfricanLion.cs

public class AfricanLion : Lion

{
 // …

 // If we comment out the ": base(male, weight)" line

 // the class will not compile. Try it.
 public AfricanLion(bool male, int weight)

 : base(male, weight)
 {}

 public override string ToString()
 {
 return string.Format(

 "(AfricanLion, male: {0}, weight: {1})",
 this.Male, this.Weight);
 }

 // …
}

If we comment out the line ":base(male, weight);", the class AfricanLion

will not compile. Try it.

Calling the constructor of a base class happens outside the

body of the constructor. The idea is that the fields of the

base class should be initialized before we start initializing

fields of the inheriting class, because they might depend on a

base class field.

Access Modifiers of Class Members and Inheritance

Let’s review: in the "Defining Classes" chapter, we examined the basic access

modifiers. Regarding members of a class (methods, properties and member

variables) we examined the modifiers public, private and internal.

Actually, there are two other modifiers: protected and protected internal.

This is what they mean:

- protected defines class members which are not visible to users of the

class (those who initialize and use it), but are visible to all inheriting

classes (descendants).

Chapter 20. Object-Oriented Programming Principles 813

- protected internal defines class members which are both internal,

i.e. visible within the entire assembly, and protected, i.e. not visible

outside the assembly, but visible to classes who inherit it (even outside

the assembly).

When a base class is inherited:

- All of its public, protected and protected internal members

(methods, properties, etc.) are visible to the inheriting class.

- All of its private methods, properties and member-variables are not

visible to the inheriting class.

- All of its internal members are visible to the inheriting class, only if the

base class and the inheriting class are in the same assembly (the

same Visual Studio project).

Here is an example, which demonstrates the levels of visibility with

inheritance:

Felidae.cs

/// <summary>Latin for "cats"</summary>

public class Felidae
{
 private bool male;

 public Felidae() : this(true) {}

 public Felidae(bool male)
 {
 this.male = male;

 }

 public bool Male

 {
 get { return male; }
 set { this.male = value; }

 }
}

And this is how the class Lion looks like:

Lion.cs

public class Lion : Felidae
{

 private int weight;

814 Fundamentals of Computer Programming with C#

 public Lion(bool male, int weight)
 : base(male)

 {
 // Compiler error – base.male is not visible in Lion
 base.male = male;

 this.weight = weight;
 }

 // …
}

If we try to compile this example, we will get an error message, because the

private variable male in the class Felidae is not accessible to the class

Lion:

The System.Object Class

Object-oriented programming practically became popular with C++. In this

language, it often becomes necessary to code classes, which must work with

objects of any type. C++ solves this problem in a way that is not considered

strictly object-oriented (by using void pointers).

The architects of .NET take a different approach. They create a class, which

all other classes inherit (directly or indirectly). All objects can be perceived

as instances of this class. It is convenient that this class contains important

methods and their default implementation. This class is called Object (which

is the same as object and System.Object).

In .NET every class, which does not inherit a class explicitly, inherits the

system class System.Object by default. The compiler takes care of that.

Chapter 20. Object-Oriented Programming Principles 815

Every class, which inherits from another class indirectly, inherits Object from

it. This way every class inherits explicitly or implicitly from Object and

contains all of its fields and methods.

Because of this property, every class instance can be cast to Object. A

typical example of the advantages of implicit inheritance is its use with data

structures, which we saw in the chapters on data structures. Untyped list

structures (like System.Collections.ArrayList) can hold all kinds of

objects, because they treat them as instances of the class Object.

The generic types (generics) have been provided specifically

for working with collections and objects of different types

(generics are further discussed in the chapter "Defining

Classes"). They allow creating typified classes, e.g. a

collection which works only with objects of type Lion.

.NET, Standard Libraries and Object

In .NET, there are a lot of predefined classes (we already covered a lot of

them in the chapters on collections, text files and strings). These classes are

part of the .NET framework; they are available wherever .NET is supported.

These classes are referred to as Common Type System (CTS).

.NET is one of the first frameworks, which provide such an extensive set of

predefined classes. A lot of them work with Object so that they can be used

in as many situations as possible.

.NET also provides a lot of libraries, which can be referenced additionally, and

it stands to reason that they are called class libraries or external libraries.

The Base Type Object Upcasting and Downcasting – Example

Let’s take a closer look at the Object class using an example:

ObjectExample.cs

public class ObjectExample

{
 static void Main()
 {

 AfricanLion africanLion = new AfricanLion(true, 80);
 // Implicit casting
 object obj = africanLion;

 }
}

In this example, we cast an AfricanLion to Object. This operation is called

upcasting and is permitted because AfricanLion is an indirect child of the

Object class.

816 Fundamentals of Computer Programming with C#

Now it is the time to mention that the keywords string and

object are simply compiler tricks and are substituted with

System.String and System.Object during compilation.

Let’s continue with the example:

ObjectExample.cs

// …

AfricanLion africanLion = new AfricanLion(true, 80);

// Implicit casting
object obj = africanLion;

try
{

 // Explicit casting
 AfricanLion castedLion = (AfricanLion) obj;
}

catch (InvalidCastException ice)
{
 Console.WriteLine("obj cannot be downcasted to AfricanLion");

}

In this example, we cast an Object to AfricanLion. This operation is called

downcasting and is permitted only if we indicate the type we want to cast

to, because Object is a parent class of AfricanLion and it is not clear if the

variable obj is of type AfricanLion. If it is not, an InvalidCastException

will be thrown.

The Object.ToString() Method

One of the most commonly used methods, originating from the class Object

is ToString(). It returns a textual representation of an object. Every

object includes this method and therefore has a textual representation. This

method is used when we print the object using Console.WriteLineſ…ƀ.

Object.ToString() – Example

Here is an example in which we call the ToString() method:

ToStringExample.cs

public class ToStringExample
{

 static void Main()

Chapter 20. Object-Oriented Programming Principles 817

 {
 Console.WriteLine(new object());
 Console.WriteLine(new Felidae(true));

 Console.WriteLine(new Lion(true, 80));
 }
}

The result is:

System.Object

Chapter_20_OOP.Felidae

Chapter_20_OOP.Lion

In this case, the base class implementation is called, because Lion doesn’t
override ToString(). Felidae also doesn’t override the method; therefore,

we actually call the implementation inherited from System.Object. The

result above contains the namespace of the object and the name of the class.

Overriding ToString() – Example

We will now demonstrate how useful overriding ToString() inherited from

System.Object can be:

AfricanLion.cs

public class AfricanLion : Lion
{

 // …

 public override string ToString()

 {
 return string.Format(

 "(AfricanLion, male: {0}, weight: {1})",

 this.Male, this.Weight);
 }

 // …
}

In the source code above, we use the method String.Formatſ…ƀ, in order to

format the result appropriately. This is how we can then invoke the

overridden method ToString():

OverrideExample.cs

public class OverrideExample

818 Fundamentals of Computer Programming with C#

{
 static void Main()
 {

 Console.WriteLine(new object());
 Console.WriteLine(new Felidae(true));
 Console.WriteLine(new Lion(true, 80));

 Console.WriteLine(new AfricanLion(true, 80));
 }
}

The result is:

System.Object

Chapter_20_OOP.Felidae
Chapter_20_OOP.Lion
(AfricanLion, male: True, weight: 80)

Notice that ToString() is invoked implicitly. When we pass an object to the

WriteLine() method, that object provides its string representation using

ToString() and only then it is printed to the output stream. That way,

there’s no need to explicitly get string representations of objects when

printing them.

Virtual Methods: the "override" and "new" Keywords

We need to explicitly instruct the compiler that we want our method to

override another. In order to do this, we use the override keyword. Notice

what happens if we remove it:

Let’s experiment and use the keyword new instead of override:

public class AfricanLion : Lion
{

 // …

 public new string ToString()

 {
 return string.Format(

Chapter 20. Object-Oriented Programming Principles 819

 "(AfricanLion, male: {0}, weight: {1})",
 this.Male, this.Weight);
 }

 // …
}

public class OverrideExample
{

 static void Main()
 {

 AfricanLion africanLion = new AfricanLion(true, 80);

 string asAfricanLion = africanLion.ToString();
 string asObject = ((object)africanLion).ToString();
 Console.WriteLine(asAfricanLion);

 Console.WriteLine(asObject);
 }
}

This is the result:

(AfricanLion, male: True, weight: 80)

Chapter_20_OOP.AfricanLion

We notice that the implementation of Object.ToString() is invoked when we

upcast AfricanLion to object. In other words, when we use the keyword

new, we create a new method, which hides the old one. The old method can

then only be called with an upcast.

What would happen, if we reverted to using the keyword override in the

previous example? Take a look for yourself:

(AfricanLion, male: True, weight: 80)

(AfricanLion, male: True, weight: 80)

Surprising, isn’t it? It turns out that when we override a method, we cannot

access the old implementation even if we use upcasting. This is because there

are no longer two ToString() methods, but rather only the one we overrode.

A method, which can be overridden, is called virtual. In .NET, methods are

not virtual by default. If we want a method to be overridable, we can do so

by including the keyword virtual in the declaration of the method.

The explicit instructions to the compiler that we want to override a method

(by using override), is a protection against mistakes. If there’s a typo in the

method’s name or the types of its parameters, the compiler will inform us

820 Fundamentals of Computer Programming with C#

immediately of this mistake. It will know something is not right when it

cannot find a method with the same signature in any of the base classes.

Virtual Methods are explained in details in the section about polymorphism.

Transitive Properties of Inheritance

In mathematics, transitivity indicates transferability of relationships. Let’s

take the indicator "larger than" (>) as an example. If A>B and B>C, we can

conclude that A>C. This means that the relation "larger than" (>) is

transitive, because we can unequivocally determine whether A is larger or

smaller than C and vice versa.

If the class Lion inherits the class Felidae and the class AfricanLion

inherits Lion, then this implies that AfricanLion inherits Felidae. Therefore,

AfricanLion also has the property Male, which is defined in Felidae. This

useful property allows a particular functionality to be defined in the most

appropriate class.

Transitiveness – Example

Here is an example, which demonstrates the transitive property of

inheritance:

TransitivenesExample.cs

public class TransitivityExample
{
 static void Main()

 {
 AfricanLion africanLion = new AfricanLion(true, 15);
 // Property defined in Felidae

 bool male = africanLion.Male;
 africanLion.Male = true;

 }

}

It is because of the transitive property of inheritance that we can be sure that

all classes include the method ToString() and all other methods of Object

regardless of which class they inherit.

Inheritance Hierarchy

If we try to describe all big cats, then, sooner or later, we will end up with a

relatively large group of classes, which inherit one another. All these classes,

combined with the base classes, form a hierarchy of big cat classes. The

easiest way to describe such hierarchies is by using class diagrams. Let’s
take a look at what a "class-diagram" is.

Chapter 20. Object-Oriented Programming Principles 821

Class Diagrams

A Class Diagram is one of several types of diagrams defined in UML. UML

(Unified Modeling Language) is a notation for visualizing different

processes and objects related to software development. We will talk about

this further in the section on UML notation. Now let’s discuss class diagrams,

because they are used to describe visually class hierarchies, inheritance and

the structure of the classes themselves.

What is UML Class Diagram?

It is commonly accepted to draw class diagrams as rectangles with name,

attributes (member variables) and operations (methods). The connections

between them are denoted with various types of arrows.

Briefly, we will explain two pieces of UML terminology, so we can understand

the examples more easily. The first one is generalization. Generalization is a

term signifying the inheritance of a class or the implementation of an

interface (we will explain interfaces shortly).

The other term is association. An association, would be, e.g. "The Lion has

paws", where Paw is another class. Association is has-a relationship.

Generalization and association are the two main ways to

reuse code.

A Class Based on a Class Diagram – Example

This is what a sample class diagram looks like:

The class is represented as a rectangle, divided in 3 boxes one under

another. The name of the class is at the top. Next, there are the attributes

(UML term) of the class (in .NET they are called member variables and

properties). At the very bottom are the operations (UML term) or methods

(in .NET jargon). The plus/minus signs indicate whether an attribute /

operation is visible (+ means public) or not visible (- means private).

Protected members are marked with #.

Class Diagram – Example of Generalization

Here is a class diagram that visually illustrates generalization (Felidae

inherited by Lion inherited by AfricanLion):

+Male() : bool

Felidae

-male : bool

822 Fundamentals of Computer Programming with C#

In this example, the arrows indicate generalization (inheritance).

Associations

Associations denote connections between classes. They model mutual

relations. They can define multiplicity (1 to 1, 1 to many, many to 1, 1 to 2,

…, and many to many).

A many-to-many association is depicted in the following way:

A many-to-many association by attribute is depicted in the following way:

In this case, there are connecting attributes, which indicate the variables

holding the connection between classes.

A one-to-many association is depicted like this:

+Male() : bool

Felidae

-male : bool

+Weight() : int

Lion

-weight : int

+ToString() : string

AfricanLion

CourseStudent

* *

CourseStudent -courses

*

-students

*

Chapter 20. Object-Oriented Programming Principles 823

A one-to-one association is depicted like this:

From Diagrams to Classes

Class diagrams are most often used for creating classes. Diagrams facilitate

and speed up the design of classes in a software project.

We can create classes directly following the diagram above. Here is the

Capital class:

Capital.cs

public class Capital { }

And the Country class:

Country.cs

public class Country
{

 /// <summary>Country's capital - association</summary>
 private Capital capital;

 // …

 public Capital Capital

 {
 get { return capital; }
 set { this.capital = value; }

 }

 // …
}

ExamStudent

1 *

CapitalCountry

1 1

824 Fundamentals of Computer Programming with C#

Aggregation

Aggregation is a special type of association. It models the relationship of

kind "whole / part". We refer to the parent class as an aggregate. The

aggregated classes are called components. There is an empty rhombus at

one end of the aggregation:

Composition

A filled rhombus represents composition. Composition is an aggregation

where the components cannot exist without the aggregate:

Abstraction

The next core principle of object-oriented programming we are about to

examine is "abstraction". Abstraction means working with something we

know how to use without knowing how it works internally. A good

example is a television set. We don’t need to know the inner workings of a TV,

in order to use it. All we need is a remote control with a small set of buttons

(the interface of the remote) and we will be able to watch TV.

The same goes for objects in OOP. If we have an object Laptop and it needs a

processor, we use the object Processor. We do not know (or rather it is of no

concern to us) how it calculates. In order to use it, it’s sufficient to call the

method Calculate() with appropriate parameters.

Abstraction is something we do every day. This is an action, which obscures

all details of a certain object that do not concern us and only uses the details,

which are relevant to the problem we are solving. For example, in hardware

configurations, there is an abstraction called "data storage device" which

can be a hard disk, USB memory stick or CD-ROM drive. Each of these

works in a different way internally but, from the point of view of the operating

system and its applications, it is used in the same way – it stores files and

folders. In Windows we have Windows Explorer and it can work with all

devices in the same way, regardless of whether a device is a hard drive or a

USB stick. It works with the abstraction "storage device" and is not involved

with how data is read or written. The drivers of the particular device take care

of that. They are implementations of the interface "data storage device".

Zoo

-elephants

-snakes
+Weight() : int

Lion

-weight : int

*

Human Brain

1 1

Chapter 20. Object-Oriented Programming Principles 825

Abstraction is one of the most important concepts in programming and

OOP. It allows us to write code, which works with abstract data

structures (like dictionaries, lists, arrays and others). We can work with an

abstract data type by using its interface without concerning ourselves with its

implementation. For instance, we can save to a file all elements from a list

without bothering if it is implemented with an array, a linked list, etc. The

code remains unchanged, when we work with other data types. We can even

write new data types (we will discuss this later) and make them work with our

program without changing it.

Abstraction allows us to do something very important – define an interface

for our applications, i.e. to define all tasks the program is capable to

execute and their respective input and output data. That way we can make a

couple of small programs, each handling a smaller task. When we combine

this with the ability to work with abstract data, we achieve great flexibility in

integrating these small programs and much more opportunities for code

reuse. These small subprograms are referred to as components. This

approach for writing programs is widely adopted since it allows us to reuse

not only objects, but entire subprograms as well.

Abstraction – Abstract Data Example

Here is an example, where we define a specific data type "African lion", but

use it later on in an abstract manner through the "Felidae" abstraction. This

abstraction does not concern itself with the details of all types of lions.

AbstractionExample.cs

public class AbstractionExample
{
 static void Main()

 {
 Lion lion = new Lion(true, 150);
 Felidae bigCat1 = lion;

 AfricanLion africanLion = new AfricanLion(true, 80);
 Felidae bigCat2 = africanLion;

 }
}

Interfaces

In the C# language the interface is a definition of a role (a group of abstract

actions). It defines what sort of behavior a certain object must exhibit,

without specifying how this behavior should be implemented. Interfaces are

also known as contracts or specifications of behavior.

826 Fundamentals of Computer Programming with C#

An object can have multiple roles (or implement multiple interfaces /

contracts) and its users can utilize it from different points of view.

For example, an object of type Person can have the roles of Soldier (with

behavior "shoot your enemy"), Husband (with behavior "love your wife") and

Taxpayer (with behavior "pay your taxes"). However, every person

implements its behavior in a different way; John pays his taxes on time,

George pays them overdue and Peter doesn’t pay them at all.

Some may ask why the base class of all objects (the class Object) is not an

interface. The reason is because in such case, every class would have to

implement a small, but very important group of methods and this would take

an unnecessary amount of time. It turns out that not all classes need a

specific implementation of Object.GetHashCode(), Object.Equalsſ…ƀ and

Object.ToString(), i.e. the default implementation suffices in most cases.

It’s not necessary to override any of the methods in the Object class, but if

the situation calls for it we can. Overriding methods is explained in the

virtual methods section.

Interfaces – Key Concepts

An interface can only declare methods and constants.

A method signature is the combination of a method’s name and a

description of its parameters (type and order). In a class / interface all

methods have to have different signatures and should not be identical with

signatures of inherited methods.

A method declaration is the combination of a method’s return type and its

signature. The return type only specifies what the method returns.

A method is identified by its signature. The return type is not

a part of it. If two methods' only difference is the return type

(as in the case when a class inherits another), then it cannot

be unequivocally decided which method must be executed.

A class / method implementation is the source code of a class / method.

Usually it is between curly brackets: "{" and "}". Regarding methods, this is

also referred to as the method body.

Interfaces – Example

An interface in .NET is defined with the keyword interface. An interface can

contain only method declarations and constants. Here is an example of an

interface:

Reproducible.cs

public interface Reproducible<T> where T : Felidae

{

Chapter 20. Object-Oriented Programming Principles 827

 T[] Reproduce(T mate);
}

We explained the generics in the "Defining Classes" chapter (section

"Generics"). The interface we wrote has a method of type T (T must inherit

Felidae) which returns an array of T.

And this is how the class Lion, which implements the interface

Reproducible looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{

 // …

 Lion[] Reproducible<Lion>.Reproduce(Lion mate)

 {
 return new Lion[]{new Lion(true, 12), new Lion(false, 10)};
 }

}

The name of the interface is coded in the declaration of the class (on the first

row) and specifies the generic class.

We can indicate which method from a specific interface we implement by

typing its name explicitly:

Lion[] Reproducible<Lion>.Reproduce(Lion mate)

In an interface, methods are only declared; the implementation is coded in

the class implementing the interface, i.e. – Lion.

The class that implements a certain interface must implement all methods

in it. The only exception is when the class is abstract. Then it can implement

none, some or all of the methods. All remaining methods have to be

implemented in some of the inheriting classes.

Abstraction and Interfaces

The best way to achieve abstraction is by working though interfaces. A

component works with interfaces which another implements. That way, a

change in the second component will not affect the first one as long as the

new component implements the old interface. The interface is also called a

contract. Every component upholds a certain contract (the signature of

certain methods). That way, two components upholding a contract can

communicate with each other without knowing how their counterpart works.

828 Fundamentals of Computer Programming with C#

Some important interfaces from the Common Type System (CTS) are the list

and collection interfaces: System.Collections.Generic.IList<T> and

System.Collections.Generic.ICollection<T>. All of the standard .NET

collection classes implement these interfaces and the various components

pass different implementations (arrays, linked lists, hash tables, etc.) to one

another using a common interface.

Collections are an excellent example of an object-oriented library with

classes and interfaces that actively use all core principles of OOP: abstraction,

inheritance, encapsulation and polymorphism.

When Should We Use Abstraction and Interfaces?

The answer to this question is: always when we want to achieve

abstraction of data or actions, whose implementation can change later on.

Code, which communicates with another piece of code through interfaces, is

much more resilient to changes than code written using specific classes.

Working through interfaces is common and a highly recommended

practice – one of the basic rules for writing high-quality code.

When Should We Write Interfaces?

It is always a good idea to use interfaces when functionality is exposed to

another component. In the interface we include only the functionality (in

the form of a declaration) that others need to see.

Internally, a program / component can use interfaces for defining roles.

That way, an object can be used by different classes through different roles.

Encapsulation

Encapsulation is one of the main concepts in OOP. It is also called

"information hiding". An object has to provide its users only with the

essential information for manipulation, without the internal details. A

Secretary using a Laptop only knows about its screen, keyboard and mouse.

Everything else is hidden internally under the cover. She does not know

about the inner workings of Laptop, because she doesn’t need to, and if

she does, she might make a mess. Therefore parts of the properties and

methods remain hidden to her.

The person writing the class has to decide what should be hidden and what

not. When we program, we must define as private every method or field

which other classes should not be able to access.

Encapsulation – Examples

The example below shows how to hide methods that the class’ user doesn’t
have to be familiar with and are only used internally by the author of the

class. First, we define an abstract class Felidae, which defines the public

operations of cats (regardless of the cat’s type):

Chapter 20. Object-Oriented Programming Principles 829

Felidae.cs

public class Felidae

{
 public virtual void Walk()
 {

 // …
 }

 // …
}

This is how the class Lion looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 // …

 private Paw frontLeft;
 private Paw frontRight;

 private Paw bottomLeft;
 private Paw bottomRight;

 private void MovePaw(Paw paw) {
 // …
 }

 public override void Walk()
 {

 this.MovePaw(frontLeft);
 this.MovePaw(frontRight);
 this.MovePaw(bottomLeft);

 this.MovePaw(bottomRight);
 }

 // …
}

The public method Walk() calls some other private method 4 times. That

way the base class is short – it consists of a single method. The

implementation, however, calls another of its methods, which is hidden from

the users of the class. That way, Lion doesn’t publicly disclose

information about its inner workings (it encapsulates certain behavior).

830 Fundamentals of Computer Programming with C#

At a later stage, this makes it possible to change its implementation without

any of the other classes finding out and requiring changes.

Polymorphism

The next fundamental principle of Object-Oriented Programming is

"Polymorphism". Polymorphism allows treating objects of a derived

class as objects of its base class. For example, big cats (base class) catch

their prey (a method) in different ways. A Lion (derived class) sneaks on it,

while a Cheetah (another derived class) simply outruns it.

Polymorphism allows us to treat a cat of random size just like a big cat and

command it "catch your prey", regardless of its exact size.

Polymorphism can bear strong resemblance to abstraction, but it is mostly

related to overriding methods in derived classes, in order to change

their original behavior inherited from the base class. Abstraction is

associated with creating an interface of a component or functionality (defining

a role). We are going to explain method overriding shortly.

Abstract Classes

What happens if we want to specify that the class Felidae is incomplete and

only its successors can have instances? This is accomplished by putting the

keyword abstract before the name of the class and indicates that the class

is not ready to be instantiated. We refer to such classes as abstract

classes. And how do we indicate which exact part of the class is incomplete?

Once again, this is accomplished by putting the keyword abstract before the

name of the method to be implemented. This method is called an abstract

method and cannot have an implementation, but a declaration only.

Each class with at least one abstract method must be abstract. Makes

sense, right? However, the opposite is not true. It is possible to define a class

as an abstract one, even when there are no abstract methods in it.

Abstract classes are something in the middle between classes and

interfaces. They can define ordinary methods and abstract methods.

Ordinary methods have an implementation, whereas abstract methods are

empty (without an implementation) and remain to be implemented later by

the derived classes.

Abstract Class – Examples

Let’s take a look at an example of an abstract class:

Felidae.cs

/// <summary>Latin for "cats"</summary>
public abstract class Felidae

{

Chapter 20. Object-Oriented Programming Principles 831

 // …

 protected void Hide()

 {
 // …
 }

 protected void Run()
 {

 // …
 }

 public abstract bool CatchPrey(object prey);
}

Notice how in the example above the ordinary methods Hide() and Run()

have a body, while the abstract method CatchPrey() does not. Notice that

the methods are declared as protected.

Here is how the implementation of the above abstraction looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 protected void Ambush()

 {
 // …
 }

 public override bool CatchPrey(object prey)
 {

 base.Hide();
 this.Ambush();
 base.Run();

 // …
 return false;
 }

}

Here is one more example of abstract behavior, implemented with an

abstract class and a polymorphic call to an abstract method. In this example

we define abstract method and we override it later in a descendant class.

Let’s see the code and discuss it later.

Firstly, we define the abstract class Animal:

832 Fundamentals of Computer Programming with C#

Animal.cs

public abstract class Animal

{
 public void PrintInformation()
 {

 Console.WriteLine("I am a {0}.", this.GetType().Name);
 Console.WriteLine(GetTypicalSound());
 }

 protected abstract String GetTypicalSound();
}

We also define the class Cat, which inherits the abstract class Animal and

defines an implementation of the abstract method GetTypicalSound():

Cat.cs

public class Cat : Animal

{
 protected override String GetTypicalSound()
 {

 return "Meoooow!";
 }
}

If we execute the following program:

public class AbstractClassExample
{
 static void Main()

 {

 Animal cat = new Cat();
 cat.PrintInformation();
 }

}

we are going to get the following result:

I am a Cat.
Meoooow!

In the example, the PrintInformation() method from the abstract class

does its work by relying on the result from a call to the abstract method

GetTypicalSound() which is expected to be implemented in different ways by

Chapter 20. Object-Oriented Programming Principles 833

the kinds of animals (the various successors of the class Animal). Different

animals make distinct sounds, but the functionality for printing information

about animals is common to all animals, and that’s why it is exported to the

base class.

Purely Abstract Classes

Abstract classes, as well as interfaces, cannot be instantiated. If we try to

create an instance of an abstract class, we are going to get an error during

compilation.

Sometimes a class can be declared abstract, even if it has no

abstract methods, in order to simply prohibit using it directly

without creating an instance of a successor.

A pure abstract class is an abstract class, which has no implemented

methods and no member variables. It is very similar to an interface. The

fundamental difference is that a class can implement many interfaces and

inherit only one class (even if that class is abstract).

Initially, interfaces were not necessary in the presence of "multiple

inheritance". They had to be conceived as a means to supersede it in

specifying the numerous roles of an object.

Virtual Methods

A method, which can be overridden in a derived class, is called a virtual

method. Methods in .NET by default aren’t virtual. If we want to make a

method virtual, we mark it with the keyword virtual. Then the derived

class can declare and define a method with the same signature.

Virtual methods are important for method overriding, which lies at the heart

of polymorphism.

Virtual Methods – Example

We have a class inheriting another and the two classes share a common

method. Both versions of the method write on the console. Here is how the
Lion class looks like:

Lion.cs

public class Lion : Felidae, Reproducible<Lion>
{
 public override void CatchPrey(object prey)

 {

 Console.WriteLine("Lion.CatchPrey");
 }

}

834 Fundamentals of Computer Programming with C#

Here is how the AfricanLion class looks like:

AfricanLion.cs

public class AfricanLion : Lion
{
 public override void CatchPrey(object prey)

 {
 Console.WriteLine("AfricanLion.CatchPrey");
 }

}

We make three attempts to create instances and call the method CatchPrey.

VirtualMethodsExample.cs

public class VirtualMethodsExample

{
 static void Main()
 {

 Lion lion = new Lion(true, 80);
 lion.CatchPrey(null);
 // Will print "Lion.CatchPrey"

 AfricanLion lion = new AfricanLion(true, 120);
 lion.CatchPrey(null);

 // Will print "AfricanLion.CatchPrey"

 Lion lion = new AfricanLion(false, 60);

 lion.CatchPrey(null);
 // Will print "AfricanLion.CatchPrey", because
 // the variable lion has a value of type AfricanLion

 }
}

In the last attempt, you can clearly see how, in fact, the overwritten

method is called and not the base method. This happens, because it is

validated what the actual class behind the variable is and whether it

implements (overwrites) that method. Rewriting of methods is also called

overriding of virtual methods.

Virtual methods as well as abstract methods can be overridden. Abstract

methods are actually virtual methods without a specific implementation. All

methods defined in an interface are abstract and therefore virtual, although

this is not explicitly defined.

Chapter 20. Object-Oriented Programming Principles 835

Virtual Methods and Methods Hiding

In the example above, the implementation of the base class is hidden and

omitted. Here is how we can also use it as part of the new implementation (in

case we want to complement the old implementation rather than override it).

Here is how the AfricanLion class looks like:

AfricanLion.cs

public class AfricanLion : Lion
{

 public override void CatchPrey(object prey)

 {
 Console.WriteLine("AfricanLion.CatchPrey");
 Console.WriteLine("calling base.CatchPrey");

 Console.Write("\t");
 base.CatchPrey(prey);
 Console.WriteLine("...end of call.");

 }
}

In this example, three lines will be written on the console when

AfricanLion.CatchPreyſ…ƀ is called:

AfricanLion.CatchPrey
calling base.CatchPrey
 Lion.CatchPrey

...end of call.

The Difference between Virtual and Non-Virtual Methods

Some may ask what the difference between the virtual and non-virtual

methods is.

Virtual methods are used when we expect from derived classes to change /

complement / alter some of the inherited functionality. For example, the

method Object.ToString() allows derived classes to change / replace its

implementation in any way they want. Then, even if we work with an object

not directly, but rather by upcasting it to Object, we use the overwritten

implementation of the virtual methods.

Virtual methods are a key characteristic of objects when we talk about

abstraction and working with abstract types.

Sealing of methods is done when we rely on a piece of functionality and we

don’t want it to be altered. We already know that methods are sealed by

default. But if we want a base class’ virtual method to become sealed in a

derived class, we use override sealed.

836 Fundamentals of Computer Programming with C#

The string class has no virtual methods. In fact, inheriting string is

entirely forbidden for inheritance through the keyword sealed in its

declaration. Here are parts of the declarations of string and object classes

(the ellipses in square brackets indicate omitted, irrelevant code):

namespace System
{

 […] public class Object
 {
 […] public Object();
 […] public virtual bool Equals(object obj);
 […] public static bool Equals(object objA, object objB);
 […] public virtual int GetHashCode();
 […] public Type GetType();
 […] protected object MemberwiseClone();
 […] public virtual string ToString();
 }

 […] public sealed class String : […]
 {
 […] public String(char* value);
 […] public int IndexOf(string value);
 […] public string Normalize();
 […] public string[] Split(params char[] separator);
 […] public string Substring(int startIndex);
 […] public string ToLower(CultureInfo culture);
 […]
 }

}

When Should We Use Polymorphism?

The answer to this question is simple: whenever we want to enable

changing a method’s implementation in a derived class. It’s a good rule

to work with the most basic class possible or directly with an interface. That

way, changes in used classes reflect to a much lesser extent on classes

written by us. The less a program knows about its surrounding classes, the

fewer changes (if any) it would have to undergo.

Cohesion and Coupling

The terms cohesion and coupling are inseparable from OOP. They

complement and explain further some of the principles we have described so

far. Let’s get familiar with them.

Chapter 20. Object-Oriented Programming Principles 837

Cohesion

The concept of cohesion shows to what degree a program’s or a component’s

various tasks and responsibilities are related to one another, i.e. how much

a program is focused on solving a single problem. Cohesion is divided into

strong cohesion and weak cohesion.

Strong Cohesion

Strong cohesion indicates that the responsibilities and tasks of a piece of code

(a method, class, component or a program) are related to one another and

intended to solve a common problem. This is something we must always

aim for. Strong cohesion is a typical characteristic of high-quality software.

Strong Cohesion in a Class

Strong cohesion in a class indicates that the class defines only one entity.

We mentioned earlier that an entity can have many roles (Peter is a soldier,

husband and a taxpayer). Each of these roles is defined in the same class.

Strong cohesion indicates that the class solves only one task, one problem,

and not many at the same time.

A class, which does many things at the same time, is difficult to

understand and maintain. Consider a class, which implements a hash table,

provides functions for printing, sending an e-mail and working with

trigonometric functions all at once. How do we name such a class? If we find

it difficult to answer this question, this means that we have failed to achieve

strong cohesion and have to separate the class into several smaller classes,

each solving a single task.

Strong Cohesion in a Class – Example

As an example of strong cohesion we can point out the System.Math class. It

performs a single task: it provides mathematical calculations and constants:

- Sin(), Cos(), Asin()

- Sqrt(), Pow(), Exp()

- Math.PI, Math.E

Strong Cohesion in a Method

A method is well written when it performs only one task and performs

it well. A method, which does a lot of work related to different things, has

bad cohesion. It has to be broken down into simpler methods, each

solving only one task. Once again, the question is posed what name should

we give to a method, which finds prime numbers, draws 3D graphics on the

screen, communicates with the network and prints records extracted from a

data base? Such a method has bad cohesion and has to be logically

separated into several methods.

838 Fundamentals of Computer Programming with C#

Weak Cohesion

Weak cohesion is observed along with methods, which perform several

unrelated tasks. Such methods take several different groups of parameters,

in order to perform different tasks. Sometimes, this requires logically

unrelated data to be unified for the sake of such methods. Weak cohesion is

harmful and must be avoided!

Weak Cohesion – Example

Here is a sample class with weak cohesion:

public class Magic

{

 public void PrintDocumentſDocument dƀ { … }
 public void SendEmail(string recipient,
 string subject, string textƀ { … }
 public void CalculateDistanceBetweenPoints(
 int x1, int y1, int x2, int yɩƀ { … }
}

Best Practices with Cohesion

Strong cohesion is quite logically the "good" way of writing code. The

concept is associated with simpler and clearer source code – code that is

easier to maintain and reuse (because of the fewer tasks it has to perform).

Contrarily, with weak cohesion each change is a ticking time bomb, because

it could affect other functionality. Sometimes a logical task is spread out to

several different modules and thus changing it is more labor intensive. Code

reuse is also difficult, because a component does several unrelated tasks and

to reuse it the exact same conditions must be met which is hard to achieve.

Coupling

Coupling mostly describes the extent to which components / classes depend

on one another. It is broken down into loose coupling and tight coupling.

Loose coupling usually correlates with strong cohesion and vice versa.

Loose Coupling

Loose coupling is defined by a piece of code’s (program / class / component)

communication with other code through clearly defined interfaces

(contracts). A change in the implementation of a loosely coupled component

doesn’t reflect on the others it communicates with. When you write source

code, you must not rely on inner characteristics of components (specific

behavior that is not described by interfaces).

The contract has to be maximally simplified and define only the required

behavior for this component’s work by hiding all unnecessary details.

Chapter 20. Object-Oriented Programming Principles 839

Loose coupling is a code characteristic you should aim for. It is one of the

characteristics of high-quality programming code.

Loose Coupling – Example

Here is an example of loose coupling between classes and methods:

class Report
{
 public bool LoadFromFile(string fileNameƀ { … }
 public bool SaveToFile(string fileNameƀ { … }
}

class Printer
{
 public static int Print(Report reportƀ { … }
}

class Example

{
 static void Main()
 {

 Report myReport = new Report();
 myReport.LoadFromFile("DailyReport.xml");
 Printer.Print(myReport);

 }
}

In this example, none of the methods depend on the others. The

methods rely only on some of the parameters, which are passed to them.

Should we need one of the methods in a next project, we could easily take it

out and reuse it.

Tight Coupling

We achieve tight coupling when there are many input parameters and output

parameters; when we use undocumented (in the contract) characteristics of

another component (for example, a dependency on static fields in another

class); and when we use many of the so called control parameters that

indicate behavior with actual data. Tight coupling between two or more

methods, classes or components means that they cannot work

independently of one another and that a change in one of them will also

affect the rest. This leads to difficult to read code and big problems with its

maintenance.

Tight Coupling – Example

Here is an example of tight coupling between classes and methods:

840 Fundamentals of Computer Programming with C#

class MathParams
{
 public static double operand;

 public static double result;
}

class MathUtil
{
 public static void Sqrt()

 {
 MathParams.result = CalcSqrt(MathParams.operand);

 }

}

class SpaceShuttle

{
 static void Main()
 {

 MathParams.operand = 64;
 MathUtil.Sqrt();
 Console.WriteLine(MathParams.result);

 }
}

Such code is difficult to understand and maintain, and the likelihood of

mistakes when using it is great. Think about what happens if another method,

which calls Sqrt(), passes its parameters through the same static variables

operand and result.

If we have to use the same functionality for deriving square root in a

subsequent project, we will not be able to simply copy the method Sqrt(),

but rather we will have to copy the classes MathParams and MathUtil

together with all of their methods. This makes the code difficult to reuse.

In fact, the above code is an example of bad code according to all rules of

Procedural and Object-Oriented Programming and if you think twice, you will

certainly identify at least several more disregarded recommendations from

those we have given you so far.

Best Practices with Coupling

The most common and advisable way of invoking a well written module’s
functionality is through interfaces. That way, the functionality can be

substituted without clients of the code requiring changes. The jargon

expression for this is "programming against interfaces".

Most commonly, an interface describes a "contract" observed by this module.

It is good practice not to rely on anything else other than what’s described by

Chapter 20. Object-Oriented Programming Principles 841

this contract. The use of inner classes, which are not part of the public

interface of a module, is not recommended because their implementation can

be substituted without substituting the contract (we already discussed this in

the section "Abstraction").

It is good practice that the methods are made flexible and ready to work

with all components, which observe their interfaces, and not only with

definitive ones (i.e. to have implicit requirements). The latter would mean

that these methods expect something specific from the components they can

work with. It is also good practice that all

dependencies are clearly described and

visible. Otherwise, the maintenance of such

code becomes difficult (it is riddled with

stumbling-blocks).

A good example of strong cohesion and loose

coupling we can find in the classes from the

standard namespaces System.Collections

and System.Collections.Generic. These

.NET classes for working with collections have

strong cohesion. Each solves a single

problem and allows easy reuse. These classes

have another characteristic of high-quality

programming code: loose coupling. The

classes, implementing the collections, are not

related to one another. Each works through a

strictly defined interface and does not give away details of its

implementation. All methods and fields not from the interface are hidden, in

order to reduce the possibility of coupling with them. Methods in the collection

classes do not depend on static variables and do not rely on any input data

except for their inner state and passed parameters. This is good practice

every programmer sooner or later attains with gained experience.

Spaghetti Code

Spaghetti code is unstructured code with unclear logic; it is difficult to

read, understand and maintain; it violates and mixes up consistency; it

has weak cohesion and tight coupling. Such code is associated with

spaghetti, because it is just as tangled and twisted. When you pull out a

strand of spaghetti (i.e. a class or method), the whole dish of spaghetti can

turn out tangled in it (i.e. changes in one method or class lead to dozens of

other changes because of the strong dependence between them). It is almost

impossible to reuse spaghetti code, since there is no way to separate that part

of the code, which is practically applicable.

Spaghetti code is achieved when you have written code, supplement it and

have to readapt it again and again every time the requirements change. Time

passes by until a moment comes when it has to be rewritten from scratch.

842 Fundamentals of Computer Programming with C#

Cohesion and Coupling in Engineering Disciplines

If you think that the principles of strong cohesion and loose coupling apply

only to programming, you are deeply mistaken. These are fundamental

engineering principles you will come across in construction, machine

building, electronics and thousands of other fields.

Let’s take, for instance, a hard disk drive (HDD):

It solves only one task doesn’t it? The hard disk

solves the task of storing data. It does not cool

down the computer, does not make sounds, has

no computing power and is not used as a

keyboard. It is connected to the computer with

two cables only, i.e. it has a simple interface for

access and is not bound to other peripherals. The

hard disk works separately and other devices

aren’t concerned about how it works exactly. The

CPU commands it to "read" and it reads, then it

commands it to "write" and it writes. How exactly

it does this remains hidden inside it. Different models can work in different

ways, but that is their own concern. You can see that the CPU has strong

cohesion, loose coupling, good abstraction and good encapsulation. This is

how you should implement your classes – they must do only one thing, do

it well, bind them minimally to other classes (or not link them at all

whenever that’s possible), have a clear interface and good abstraction and to

hide the details of their internal workings.

Here is another example: imagine what would happen, if the processor, the

hard disk, the CD-ROM drive and the keyboard were soldered to the

motherboard of the computer. It would mean that if any part of the keyboard

were broken, you would have to throw away the whole computer. You can see

how hardware cannot work well with tight coupling and weak cohesion. The

same applies to software.

Object-Oriented Modeling (OOM)

Suppose we have a problem or task to solve. The problem usually comes from

the real word. It exists in a reality we are going to call its surrounding

environment.

Object-oriented modeling (OOM) is a process associated with OOP where

all objects related to the problem we are solving are brought out (a model is

created). Only the classes' characteristics, which are important for solving this

particular problem, are elicited. The rest are ignored. That way, we create a

new reality, a simplified version of the original one (its model), such that

it allows us to solve the problem or task.

For example, if we model a ticketing system, the important

characteristics of a passenger could be their name, their age, whether they

use a discount and whether they are male or female (if we sell sleeping

Chapter 20. Object-Oriented Programming Principles 843

berths). A passenger has many other not important characteristics we

aren’t concerned about, such as the color of their eyes, what shoe size they

wear, what books they like or what beer they drink.

By modeling, a simplified model of reality is created in order to solve a

specific task. In object-oriented modeling, the model is created by means of

OOP: via classes, class attributes, class methods, objects, relations between

classes, etc. Let’s scrutinize this process.

Steps in Object-Oriented Modeling

Object-oriented modeling is usually performed in these steps:

- Identification of classes.

- Identification of class attributes.

- Identification of operations on classes.

- Identification of relations between classes.

We will consider a short example through which we will demonstrate how to

apply these steps.

Identification of Classes

Suppose we have the following excerpt from a system’s specification:

The user must be able to describe each product by its characteristics,

including name and product number. If the barcode doesn’t match the

product, an error must be generated on the error screen. There has to be a

daily report for all transactions specified in section 9.3.

Here is how we identify key concepts:

The user must be able to describe each product by its characteristics,

including name and product number. If the barcode doesn’t match the

product, an error must be generated on the error screen. There has to be

a daily report for all transactions specified in section 9.3.

We have just identified the classes we will need. The names of the classes

are the nouns in the text, usually common nouns in singular like Student,

Message, Lion. Avoid names that don’t come from the text, such as:

StrangeClass, AddressTheStudentHas.

Sometimes it’s difficult to determine whether some subject or phenomena

from the real world has to be a class. For example, the address can be

defined as a class Address or a string. The better we explore the problem,

the easier it will be to decide which entities must be represented as classes.

When a class becomes large and complicated it has to be broken down into

several smaller classes.

844 Fundamentals of Computer Programming with C#

Identification of Class Attributes

Classes have attributes (characteristics), for example the class Student

has a name, institution and a list of courses. Not all characteristics are

important for a software system. For example, as far as the class Student is

concerned eye color is a non-essential characteristic. Only essential

characteristics have to be modeled.

Identification of Operations on Classes

Each class must have clearly defined responsibilities – what objects or

processes from the real world it identifies and what tasks it performs. Each

action in the program is performed by one or several methods in some class.

The actions are modeled as operations (methods).

A combination of verb + noun is used for the name of a method, e.g.

PrintReport(), ConnectToDatabase(). We cannot define all methods of a

given class immediately. Firstly, we define the most important methods –

those that implement the basic responsibilities of the class. Over time

additional methods appear.

Identification of Relationships between Classes

If a student is from a faculty and this is important for the task we are solving,

then student and faculty are related, i.e. the Faculty class has a list of

Students. These relations are called associations (remember the "Class

Diagrams" section).

UML Notation

UML (Unified Modeling Language) was mentioned in the section about

inheritance where we discussed class diagrams. The UML notation defines

several additional types of diagrams. Let’s check out some of them briefly.

Use Case Diagrams

They are used when we elicit the requirements for the description of possible

actions. Actors represent roles (types of users).

Use cases describe interaction between the actors and the system. The use

case model is a group of use cases – it provides a complete description of a

system’s functionality.

Use Case Diagrams – Example

Here is how a use case diagram looks like:

Chapter 20. Object-Oriented Programming Principles 845

The actor (the “dwarf” in the diagram) is someone who interacts with the

system (a user, external system or, for instance, an external environment).

The actor has a unique name and, possibly, a description. I our case

actors are the WatchUser and the WatchRepairPerson.

A use case (the “egg” in the diagram) describes a single functionality of

the system, a single action that can be performed by some actor. It has a

unique name and is related to actors. It can have input and output

conditions. Most frequently, it contains a flow of operations (a process). It can

also have other requirements. We have three use cases in the diagram above:

ReadTime, SetTime and ChangeBattery.

A package holds several logically related use cases.

Lines connect actors to the use cases they perform. An actor can perform or

be involved in one or several use cases.

Sequence Diagrams

Sequence diagrams are used when modeling the requirements of process

specification and describing use case scenarios more extensively. They allow

describing additional participants in the processes and the sequence of the

actions over the time. They are used in designing the descriptions of system

interfaces.

Sequence diagrams describe what happens over the time, the interactions

over the time, the dynamic view over the system, a sequence of steps,

just like an algorithm.

Sequence Diagrams – Example

Here is how a sequence diagram looks like:

846 Fundamentals of Computer Programming with C#

Classes are depicted with columns (lifelines). Messages (actions) are

depicted with arrows and text above the arrows. Participants are depicted

with wide rectangles. States are depicted with dashed lines. The period of

activity (activation) of certain class during the time is depicted as narrow

rectangles.

Messages – Example

The direction of the arrow designates the sender and the recipient of a

message (a method call in OOP). Horizontal dashed lines depict data flow:

Statechart Diagrams

Statechart diagrams describe the possible states of certain process and the

possible transitions between them along with the conditions for the

transitions. They represent finite-state automata (state machines). Below

we have an example of statechart diagram that illustrates the states and

transitions of typical process of changing the current time of a wall clock

which has two buttons and a screen:

Chapter 20. Object-Oriented Programming Principles 847

Activity Diagrams

Activity diagrams are a special type of statechart diagrams where

conditions are actions. They show the flow of actions in a system:

Design Patterns

Few years after the onset of the object-oriented paradigm it was found that

there are many situations, which occur frequently during software

development, such as a class, which must have only one instance within the

entire application.

Design patterns appeared as proven and highly-efficient solutions to the

most common problems of object-oriented modeling. Design patterns

are systematically described in the eponymous book by Erich Gamma & Co.

848 Fundamentals of Computer Programming with C#

"Design Patterns: Elements of Reusable Object-Oriented Software"

(ISBN 0-201-63361-2). The patterns in this book are called “the GoF

patterns” or “classical design patterns”.

This is one of the few books in the field of computer science,

which remain current 15 years after publishing. Design

patterns complement the basic principles of OOP with well-

known solutions of well-known problems. A good place to

start studying the design patterns is their Wikipedia article:

en.wikipedia.org/wiki/Design_pattern (computer science). You

may also check the "Data & Object Factory" patterns catalog

http://www.dofactory.com/Patterns/Patterns.aspx, where the authors provide

C# implementation of the classical GoF patterns.

The Singleton Design Pattern

This is the most popular and most frequently used design pattern. It allows a

class to have only one instance and defines where it has to be taken from.

Typical examples are classes, which define references to singular entities (a

virtual machine, operating system, window manager in a graphical application

or a file system) as well as classes of the next pattern (factory).

The Singleton Design Pattern – Example

Here is a sample implementation of the singleton design pattern:

Singleton.cs

public class Singleton

{
 // The single instance
 private static Singleton instance;

 // Initialize the single instance

 static Singleton()

 {
 instance = new Singleton();
 }

 // The property for retrieving the single instance
 public static Singleton Instance

 {
 get { return instance; }
 }

 // Private constructor: protects against direct instantiation
 private Singleton() { }

}

http://en.wikipedia.org/wiki/Special:BookSources/0201633612
http://en.wikipedia.org/wiki/%20Design_pattern%20(computer%20science)
http://www.dofactory.com/Patterns/Patterns.aspx

Chapter 20. Object-Oriented Programming Principles 849

We have a hidden (private) constructor in order to limit external

instantiations. We have a static variable, which holds the only instance. We

initialize it only once in the static constructor of the class. The property for

retrieving the single instance is usually called Instance.

The pattern can undergo many optimizations, such as the so called "lazy

initialization" of the only variable, in order to save memory, but this is its

classical form.

The Factory Method Design Pattern

Factory method is another very common design pattern. It is intended for

"producing" objects. The instantiation of an object is not performed

directly, but rather by the factory method. This allows the factory method to

decide which specific instance to create from a family of classes implementing

a common interface. The solution can depend on the environment, a

parameter or some system setting.

The Factory Method Design Pattern – Example

Factory methods encapsulate object creation. This is useful if the creation

process is very complicated – if it depends on settings in configuration files or

input data by the user.

Suppose we have a class which contains graphics files (png, jpeg, bmp, etc.)

and creates reduced size copies of them (the so called thumbnails). A

variety of formats are supported, each represented by a class:

public class Thumbnail
{

 // …
}

public interface Image
{

 Thumbnail CreateThumbnail();

}

public class GifImage : Image

{
 public Thumbnail CreateThumbnail()
 {

 // … Create a GIF thumbnail here …
 return gifThumbnail;
 }

}

public class JpegImage : Image

850 Fundamentals of Computer Programming with C#

{
 public Thumbnail CreateThumbnail()
 {

 // … Create a JPEG thumbnail here …
 return jpegThumbnail;
 }

}

Here is how the class holding an album of images looks like:

public class ImageCollection

{
 private IList<Image> images;

 public ImageCollection(IList<Image> images)
 {

 this.images = images;
 }

 public IList<Thumbnail> CreateThumbnails()
 {
 IList<Thumbnail> thumbnails =

 new List<Thumbnail>(images.Count);
 foreach (Image thumb in images)
 {

 thumbnails.Add(thumb.CreateThumbnail());
 }
 return thumbnails;

 }
}

The client of the program may require thumbnails of all images in the album:

public class Example
{

 static void Main()
 {
 IList<Image> images = new List<Image>();

 images.Add(new JpegImage());
 images.Add(new GifImage());

 ImageCollection imageRepository =
 new ImageCollection(images);

Chapter 20. Object-Oriented Programming Principles 851

 Console.WriteLine(imageRepository.CreateThumbnails());
 }
}

Other Design Patterns

There are dozens of other well-known design patterns, but we are not going

to discuss them. The more inquisitive readers can look up "Design Patterns"

on the internet and learn what other design patterns, such as Abstract

Factory, Prototype, Adapter, Composite, Façade, Command, Observer,

Iterator, etc. serve for and how they are put into use. If you pursue .NET

development more seriously, you will see for yourselves that the whole

standard library (FCL) is built on the principles of OOP and the classic design

patterns are very actively used.

Exercises

1. We are given a school. The school has classes of students. Each class has

a set of teachers. Each teacher teaches a set of courses. The students

have a name and unique number in the class. Classes have a unique text

identifier. Teachers have names. Courses have a name, count of classes

and count of exercises. The teachers as well as the students are people.

Your task is to model the classes (in terms of OOP) along with their

attributes and operations define the class hierarchy and create a class

diagram with Visual Studio.

2. Define a class Human with properties "first name" and "last name". Define

the class Student inheriting Human, which has the property "mark". Define

the class Worker inheriting Human with the property "wage" and "hours

worked". Implement a "calculate hourly wage" method, which calculates a

worker’s hourly pay rate based on wage and hours worked. Write the

corresponding constructors and encapsulate all data in properties.

3. Initialize an array of 10 students and sort them by mark in ascending

order. Use the interface System.IComparable<T>.

4. Initialize an array of 10 workers and sort them by salary in descending

order.

5. Define an abstract class Shape with abstract method CalculateSurface()

and fields width and height. Define two additional classes for a triangle

and a rectangle, which implement CalculateSurface(). This method has

to return the areas of the rectangle (height*width) and the triangle

(height*width/2). Define a class for a circle with an appropriate

constructor, which initializes the two fields (height and width) with the

same value (the radius) and implement the abstract method for calculating

the area. Create an array of different shapes and calculate the area of each

shape in another array.

852 Fundamentals of Computer Programming with C#

6. Implement the following classes: Dog, Frog, Cat, Kitten and Tomcat. All of

them are animals (Animal). Animals are characterized by age, name and

gender. Each animal makes a sound (use a virtual method in the Animal

class). Create an array of different animals and print on the console their

name, age and the corresponding sound each one makes.

7. Using Visual Studio generate the class diagrams of the classes from the

previous task with it.

8. A bank holds different types of accounts for its customers: deposit

accounts, loan accounts and mortgage accounts. Customers can be

individuals or companies. All accounts have a customer, balance and

interest rate (monthly based). Deposit accounts allow depositing and

withdrawing of money. Loan and mortgage accounts allow only

depositing. All accounts can calculate their interest for a given period (in

months). In the general case, it is calculated as follows:

number_of_months * interest_rate. Loan accounts have no interest

rate during the first 3 months if held by individuals and during the first 2

months if held by a company. Deposit accounts have no interest rate if

their balance is positive and less than 1000. Mortgage accounts have ½
the interest rate during the first 12 months for companies and no interest

rate during the first 6 months for individuals. Your task is to write an

object-oriented model of the bank system. You must identify the classes,

interfaces, base classes and abstract actions and implement the interest

calculation functionality.

9. Read about the Abstract Factory design pattern and implement it in C#.

Solutions and Guidelines

1. The task is trivial. Just follow the problem description and write the code.

2. The task is trivial. Just follow the problem description and write the code.

3. Implement IComparable<T> in Student and then sort the array.

4. This problem is like the previous one.

5. Just implement the classes as described in the problem description.

6. Printing information can be implemented in the virtual method System.

Object.ToString(). In order to print the content of an array of animals,

you can use a foreach loop.

7. If you have the full version of Visual Studio, just use “Add New Item” 

“Class Diagram”. Class diagrams are not supported in VS Express Edition.
In this case you can find some other UML tool (see http://en.wikipedia.org/

wiki/List_of_UML_tools).

8. Use abstract class Account with abstract method CalculateInterestſ…ƀ.

9. You can read about the "abstract factory" design pattern in Wikipedia:

http://en.wikipedia.org/wiki/Abstract_factory_pattern.

http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/Abstract_factory_pattern

